Isothermal Point Mutation Detection: Toward a DNA-based Rapid Diagnostic for Sickle Cell Anemia Mary Natoli¹; Megan Chang¹; Gladstone Airewele²; Rebecca Richards-Kortum¹

Background

- Sickle cell disease (SCD) is a life-threatening inherited blood disorder that affects over 300,000 newborns globally per year
- Disproportionately impacts low-resource settings, with 90% of SCD occurring in low- and middle-income countries
- Gold-standard diagnostic methods are inaccessible in lowresource settings due to infrastructure requirements and cost
- Current point-of-care tests suffer from poor specificity, nonintuitive readout, and incompatibility with blood transfusions

Our Approach

A **DNA-based diagnostic** that detects the point mutation in the beta-globin gene that forms sickled hemoglobin (HbS) **Recombinase polymerase amplification (RPA)** isothermally and selectively amplifies genomic DNA coding for HbS or

- hemoglobin A (HbA)
- A fluorescence-based readout and subsequent analysis identifies the genotype of the template nucleic acid

Recombinase Polymerase Amplification

		•	Iso am Re the Op
Twist	Amp® exo probe		fluor
Exonuc	lease III cuts THF residue		3' bl
5′		2	exo

30+ bases

15 bases

- othermal nucleic acid plification method
- places PCR and the need for ermal cycling
- perates at 37-42°C and can be ubated against the human body

lock THF residue **O** quencher

Reaction products sequence-specific

¹Rice University, Houston, TX ²Baylor College of Medicine, Houston, TX

Isothermal Point Mutation Detection

Fluorescence-based Readout

The two reactions show a concentration-dependent output with amplification of the mismatched template suppressed or delayed Primer characteristics are important for discrimination capabilities

Assay Cost Estimates

Assay Component	Cost (USD)
RPA components	\$4.27
Primers and probe	\$0.43
Total	\$4.70

can be detected by a oligonucleotide probe

- Strategic primer design enables single-nucleotide polymorphism discrimination in a single round of amplification
- Resulting products can be detected with a sequencespecific probe in a fluorimeter or on a lateral flow strip

Multiplexed Paper-based Detection

Primer performance

Identification of positive samples								
Primer	TP	TP + FN	%					
HbA	13	13	100.0%					
HbS	72	79	91.1%					

Identification of negative samples

Primer	TN	TN + F
HbA	63	67
HbS	6	6

Conclusions and Future Directions

Amplification products can also be detected on a lateral flow strip Proof of concept data shows that amplification and capture of synthetic templates is maintained in a multiplexed format both visually (top right) and quantitatively with signal-to-background ratio analysis of scanned images (bottom right)

Results with Clinical Samples

- % 94.0% 100.0%
- Blood samples from sickle cell patients at Baylor College of Medicine as well as normal volunteers were analyzed with one or both allele-specific primer(s)
- Amplification of the mismatched template is delayed or suppressed
 - Over 90% of results are accurate

HbS and HbA can be distinguished in a single round of recombinase polymerase amplification with strategic primers

Future work will incorporate the ability to detect HbC, and reduce the volume of the reaction, therefore reducing cost

End goal to incorporate sample preparation steps and a custom fluorimeter for a true sample-to-answer test